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The linear stability of finite-cell pure-fluid Rayleigh-Be'nard convection subject to 
any homogeneous viscous and/or thermal boundary conditions is investigated via a 
variational formalism and a perturbative approach. Some general properties of the 
critical Rayleigh number with respect to change of boundary conditions or system 
size are derived. It is shown that the chemical reaction4iffusion model of spatial- 
pattern-forming systems in developmental biology can be thought of as a special case 
of the convection problem. We also prove that, as a result of the imposed realistic 
boundary conditions, the nodal surfaces of the temperature of a nonlinear stationary 
state have a tendency to be parallel or orthogonal to the sidewalls, because the full 
fluid equations become linear close to the boundary, thus suggesting similar trend for 
the experimentally observed convective rolls. 

1. Introduction 
Rayleigh-Bdnard convection has received much attention in recent years because 

of the rich dynamics and patterns it displays in experimentally well-controlled 
situations (Croquette 1989a, b ;  Niemela, Ahlers & Cannel 1990 ; Kolodner, Bensimon 
& Surko 1988; Steinberg, Moses & Feinberg 1987), and because a systematic 
theoretical treatment in terms of the amplitude equation seems capable of explaining 
many of the observed features quite successfully (see, for example, Segel 1967; 
Newel1 & Whitehead 1969; Cross 1988). Although our understanding of the problem 
is admittedly complete only if nonlinearity is included, it is also important to have 
a thorough understanding of the linear stability of the system when the convection 
cell is finite. This is particularly desirable because recent experiments (Zhong, Ecke 
& Steinberg 1991 ; Pfotenhauer, Niemela & Donnelly 1987) and numerical 
calculations (Buell & Catton 1983) have shown that the finite-size effects on the onset 
stability of a rotating convection cell are very different from those expected for a 
non-rotating one. It seems reasonable to assume that by isolating the influence of the 
sidewall on its stability we can gain a better understanding of how rotation affects 
this system. The major philosophy of this work is, therefore, to study how the linear 
stability of pure-fluid convection is affected by the presence of the sidewall, and to 
derive the results on a firmer basis. 

In this paper we shall concentrate on the following questions. How do various 
boundary conditions affect the linear stability of a finite Rayleigh-Be'nard cell which 
has an arbitrary horizontal cross-section ? What is the influence of the cell size on the 
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stability ? How do convective rolls behave near the sidewalls ? Specifically, we 
organize the presentation as follows. In $2 we discuss two variational principles : one 
for the growth rate of the linear stability of the system, and the other for the onset 
Rayleigh number R,. Several results concerning the effects of the boundary 
conditions on the linear stability are then derived as immediate consequences of this 
variational formalism. Some of them will also serve as preparatory work for $3, 
which treats the convection problem mainly from the point of view of perturbation 
theory. There, the size dependence and related issues are studied, and the results 
derived are compared with the features exhibited by the chemical reaction-diffusion 
model of pattern formation in developmental biology. We show that the spatial 
pattern-generation mechanisms in both cases are of a very similar nature, and point 
out that in the convection problem the incompressibility condition is essential in 
making the two systems similar. We also show that the critical Rayleigh number 
differs from its infinite-cell limit by an amount that scales like L-* of the system size 
L. In $4, we address one aspect of defining the angle between the convective rolls and 
the sidewalls. In  particular, we show that the nodal surfaces of the temperature of 
both the nonlinear stationary and the linearized solutions tend to be orthogonal to 
the sidewall, a result that is linear in nature in spite of the fact that the full nonlinear 
fluid equation is used in the derivation. 

2. Variational principles and consequences 
Several versions of the variational principle for the linear stability of pure-fluid 

convection in a laterally infinite cell were derived by Pellew & Southwell (1940) and 
Chandresekhar (1954, 1961). A generalized version that applies to a finite cell of 
arbitrary horizontal geometry which satisfies certain boundary conditions was 
developed by Sorokin (1953, see also Sorokin & Sushkin 1960), and later rigorously 
justified independently by Sani (1964) and Pnueli & Iscovici (1967). Joseph (1976) 
has also discussed several aspects pertinent to the variational formalism in fluid 
dynamics. In  practice, it is desirable to have a variational expression for both the 
growth rate and the critical Rayleigh number, because it allows one to compute the 
quantities of interest to high precision with relative ease. And indeed this has already 
been done for a cylindrical cell (Charlson & Sani 1970, 1971 ; Shaumeyer, Behringer 
& Baierlein 1981) and for a rectangular box (Edwards 1988; Davis 1967). On the 
other hand, one can also employ the variational character of this system to study the 
analytic properties of the finite-size effects both qualitatively and quantitatively. 
This approach is favoured over the regular perturbation method because usually it 
is easer to justify the results one derives whenever a variational formalism does exist. 
However, one should also keep in mind that there are situations in which a direct 
application of the variational principle does not provide enough information on what 
one wishes to learn about the system, in which case perturbation theory will turn out 
more useful. In this contribution we will not only apply the variational principles 
discussed below to facilitate the argument, but also supplement it by perturbation 
theory to illustrate how the combined force of both can yield interesting conclusions. 
In this section we will first give a quick derivation of two variational principles that 
apply to a finite cell which satisfies homogeneous boundary conditions, briefly 
comment on how they can be modified to incorporate a realistic sidewall, then prove 
several monotonicity results concerning the effects of the sidewall properties on the 
stability of the system. Some of these results will then be used in $ 3  when we study 
the dependence of the stability on the system size. 
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The equations that describe the motion under gravity g of a layer of pure fluid of 
thermal diffusivity K ,  kinematic viscosity v, and coefficient of thermal expansion y 
heated from below by a temperature difference AT across the top and the bottom 
plates of a convection cell of height d are (i) the Navier-Stokes equation with the 
Oberbeck-Boussinesq approximation, and (ii) the heat transfer equation. They are 
usually written in the following non-dimensional form (see, for example, Cross 1980) : 

(2.1) 

(2.2) 

V - u = 0 (incompressibility condition), (2.3) 

au 
--+(U.v)u = avu+Uee,-vp, 
at 

ae 
at 
-+ ( u - V )  8 = V28+Ru, (u, U - C ? ~ ) ,  

where u and 8 are respectively the deviations of velocity and temperature from the 
pure-conduction profile, and length, time and temperature are scaled by d ,  d 2 / K ,  and 
/cv/ygd3, respectively. In the above, u is the Prandtl number 

U = V / K ,  

and R is the Rayleigh number 
R = ygd3 A T / ( K v ) .  

But to analyse the linear stability of this problem, it turns out to be more 
convenient to rescale 8 by 8+ (R/u)b  so that the linearized equations read 

(2.6) 
au 
at 

uV2u + ( u R ) ~  0ifz - V p  = - = Au, 

or in operator form 

av 9 y  = - = hv ,  
at 

where b and a are 4 x 4 matrices defined in an obvious way, A is the eigenvalue of 
this problem, and 

v = (;). (2.10) 

If we define the inner product between v and v’ by 

<v ’~  v> = J Q u f * . u + e w  (SZ = entire cell), (2.11) 

where * indicates complex conjugation, then it is easy to show that 9 is a self-adjoint 
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operator, and thus its eigenfunctions can be chosen to be real-valued, as will be done 
from now on, provided that the boundary conditions for u and 8 are homogeneous 
in the following sense: 

u, = u.a = 0, (2.12) 

r, . (alG+B.u) au = 0, B = a+e, (2.13) 

(2.14) 

Here ri is the outward normal to the boundary aB, and tll is any vector parallel to 
8.2, whereas e = VA so that - e is the curvature vector (ill -V) ii of the boundary 
along the direction of kIl. In  the above, a, al, and p1 are scalars that can vary on 
352, though throughout this paper we shall assume that, for the sake of illustrating 
the underlying idea, they are constants on each of the two horizontal plates and the 
sidewall. It is worth pointing out that the case a = 0, which we shall call the rotation- 
free condition in this paper, does not correspond to the free-slip condition when the 
boundary is curved. (The sign of the curvature term is wrong.) This condition is a 
natural one when we try to use separation of variables to solve the coupled equations, 
because it guarantees that the vertical vorticity at  the sidewall is identically zero, 
which is essential if the method is to work for the problem at hand. This issue will 
be taken up in detail later on and in Appendix C. But before we embark on our 
investigation, it seems reasonable to ask why one would consider a physically 
unrealizable boundary condition like (2.13), and to what extent the sidewall thermal 
property can be simulated by (2.14). Actually, (2.13) is only a convenient 
mathematical construct which will help us understand how the viscous boundary 
condition affects the system’s stability. Eventually we shall relate the no-slip 
condition to the rotation-free case by way of this construction, and derive results 
that are true for a rigid cell. However, this is not entirely the case for (2.14). It so 
happens that this condition can be realized in some limiting cases, and Busse & Riahi 
(1980) and Sparrow, Goldstein & Jonsson (1964) have applied this boundary 
condition on the two horizontal plates in their study of convection problem. But 
more than that, we can actually write down a variational principle for a convection 
cell with a finite or infinite realistic sidewall, and show that in a well-defined sense 
the B in (2.14) does represent the effective thermal conductivity of the sidewall. 
Suffice it to say that the results reported here can be easily generalized to a real 
convection cell. The issues related to a cell surrounded by a realistic sidewall are 
reported elsewhere (Chen 1992). For the rest of this paper we will assume a1 (pl) 
is either zero or unity, as the case may be, and the two horizontal plates are held a t  
e = 0. 

We now state the first variational principle. 

Variational Principle I 
Define a variational functional 

- (Jn (z IVU12+ IVt912+ 2(rR)tJnu, e- (Jan (zu. B .  u + p  1812) 

Jn 142 + 1812 
4rl= 9 (2.15) 

where yt  must satisfy V u = 0 in B and u, = 0 on 852. Then I [$ ]  takes on a stationary 
value if and only if the following are satisfied : 
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(i) On the boundary all, u and 0 satisfy 

2 .(*+e.u) an = 0, 

ae -+pe = 0, 
an 

(2.16) 

(2.17) 

and (ii) YIy = Av (2.18) 

for some constant A. Thus, w is an eigenfunction of Y with (2.16) and (2.17) as the 
boundary conditions. Also, the eigenvalue A is precisely given by I[v]. 

Indeed, straightforward algebra shows that 

8 4 w l =  4 w  + awl - 4 w l  

= 2 - 6u.(a(crV2u+(aR)i8iZ)-bu) {3" 

where we have performed integration by parts, and a and b are defined by 

a = I, lu12+ 1812, 

b = - a I V ~ ) ~ + l e l ~ + + ( a R ) ~  I, u, 8- I, Q U .  B .  u +p 1812. 1" 
Variation of 6u subject to the constraints V.6u = 0 and 6u, = 0 then immediately 
yields both the linearized NavierStokes equation (2.6) and the appropriate 
boundary condition (2.16). Similarly, the heat transport equation (2.7) can be 
derived upon variation of 68. We should point out that the trial function we choose 
to substitute into I [ y ]  does not have to satisfy the correct boundary conditions 
((2.16) and (2.17)) simply because the variational principle has incorporated within 
it the appropriate boundary terms to force the ' correct ' trial function into satisfying 
the right boundary condition if it is to make I [y ]  stationary. This gives us more 
freedom in choosing the trial function when performing numerical computation or 
doing theoretical analysis. On the other hand, when dealing with the eigenvalue 
problem with the rigid boundary condition, we can formulate it in terms of a 
variational principle with a corresponding I [w]  whose expression contains no explicit 
boundary term such as $,,au.B-u only if we are willing to consider trial functions 
that already satisfy u = 0 on al2. This point was noted by previous workers (see, for 
instance, Charlson & Sani 1970), but can be seen more transparently later when we 
investigate how the solutions behave under a continuous change of the parameters 
a and B. 

Because our later argument depends heavily on the fact that the eigenvalues as 
expressed by I [ y ]  are continuous functions of the adjusting parameters a and p, and 
can never come into existence out of or disappear into nowhere when we tune them, 
it is important to show why this is true. The whole idea hinges on the following 
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inequality, which bounds a surface integral of any function g by a volume integral 
of vg: 

- Sms2 < cl(+ SnIVg12 t +c2. 

Sn g2 Sn g2 
(2.19) 

Here c, and c2 are some constants which depend only on the geometry of the domain 
52 but not on g. Although (2.19) can be proved by straightforward manipulation of 
inequalities in the one-dimensional case (Courant & Hilbert 1966) or in spaces of 
higher dimension (Chen 1991), it is also interesting to note that this inequality is 
basically the well-known Heisenberg’s uncertainty principle in quantum mechanics. 
This aspect is discussed in Appendix A. Armed with this inequality, we can easily see 
that each term in the numerator of (2.15), when normalized by the denominator 
Sn(u12+1812, must be bounded for a given I [y ] .  This is because if we denote the 
volume terms involving IVuI2 and IVBI2 by -6, then the surface terms are bounded 
by c1 @+c2 in virtue of (2.19), whereas the cross-term 2Sn u,B is no bigger than unity 
by the Cauchy-Schwarz inequality. In short, 

-g+a@+b 2 I [ w ]  >, -5-a@-b (2.20) 

for some positive constants a and b. This implies that the volume term g must be 
bounded for the given I [ y ] ,  which then guarantees the boundedness of the surface 
terms. Incidentally, (2.20) tells us that for any fixed parameters the functional I [ y ]  
actually is bounded above for all y .  This allows one to maximize I [ y ]  to find the 
‘ground state’. Suppose for a given set of parameters we have found the 
corresponding ground state yl, and assume that the parameter is changed to a 
slightly different p’, then by the boundedness of the surface term lQ [el2 of (2.15) we 
see that I’[pl] -I’[p,] can be made arbitrarily small asp’ +p. Therefore, the ground- 
state eigenvalues associated with p’ and /3 must coalesce as p’+P. This not only 
proves that the ground-state eigenvalue changes continuously as we tune 8, but also 
shows that it cannot suddenly terminate or appear when /3 is varied. By an elegant 
inductive procedure, the minimum-maximum principle (Courant & Hilbert 1966), 
one then concludes that, in fact, all the eigenvalues must obey the same law. In other 
words, the ordered eigenvalues of 9 must change continuously as we tune the 
parameters. 

The previous discussion also gives us the following characterization of the most 
unstable mode (the ‘ground state’) A, : 

A, = maxI[y]. (2.21) 
VI 

If we control the Rayleigh number so that the system becomes marginally stable a t  
R = R,, then (2.21) becomes 0 = A ,  2 I [y ]  for any trial function y.  Rewriting this 
inequality then leads us naturally to the second variational principle : 

Variational Principle II 
The critical Rayleigh number R, that makes A, vanish is characterized by 

where we have absorbed c-ri into u. 
However, in order for this variational expression for R, to be meaningful we must 

make sure that the denominator of (2.22) is positive for all trial functions y .  This 
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complication can be taken care of quite easily. For instance, y e  can consider only 
non-negative values for a and /3, and drop the curvature term C in (2.13). (One does 
not need to worry about the curvature term if the sidewall is convex.) Once the 
complication is resolved we can construct a self-adjoint operator W (defined with 
respect to an inner product different from the one we use in this paper) such that its 
eigenfunctions correspond exactly to the functions which make J[v] stationary. This 
permits one to investigate the properties of R, with rigour more directly (Chen 1992). 
But we choose not to pursue this line here, because the study of the growth rate h 
itself turns out to be intimately related to an interesting biological pattern formation 
model, the characteristics of which will be addressed and compared with those of the 
convection problem in this study. We would also like to comment that the following 
slightly different variational expression for R, that exists in the literature (see, for 
example, Busse 1985) can also be derived directly from (2.22): 

To see this, we can start with (2.22) and simply consider variation of the type 
u+pu,8+v8 for arbitrary p and v. Clearly, J[y] is maximized only if the two 
parenthesized quantities in the denominator of (2.22) are equal, from which (2.23) 
immediately follows. It is also easy to check that each of W[v] = 0 and SJ[v ]  = 0 
alone implies (2.8), with h = 0. Another point of interest is that the stationary values 
of J [ r ]  come in pairs of opposite sign, because (u, -19) also makes J [y]  stationary 
whenever (u, 8) does. 

In order to bring out the explicit dependence of I[r] and J[v] on the tuning 
parameter a (or /3 and R,  as the case may be), for the rest of this paper we will attach 
an appropriate subscript a (or /3 and R )  to both functionals I[v] and J [v]  whenever 
such emphasis is necessary. A superscript D is sometimes added to remind ourselves 
of their dependence on the geometry of i2 as well. 

As a first application of the variational principles, we observe that the stability of 
the system is lowered when R is increased. This can be simply shown as follows. Let 
h,(R) be the largest eigenvalue for a given Rayleigh number R with the associated 
eigenfunction vR. Then 

hl(R) = I R E Y R l  = I R ” Y R 1  - ( I R ” I R 1  - I R [ r R I )  

But for the ground state it must be true that sn u, 8 2 0, because we could flip the 
sign of 8 to make IR[l/TR] larger were Snuz8 less than zero, a contradiction to the 
assumption that A, is the largest eigenvalue. Therefore, 

(2.24) 

provided R > R. We would like to point out that, contrary to what Sorokin (1953) 
assumes, (2.24) is not generally true for other eigenvalues A, (j 3 2). This is shown in 
the example studied in Appendix B. We should also mention that the variational 
principle actually tells us more than what (2.24) promises. This is especially easy to 
see when the most unstable state is non-degenerate. Indeed, if we begin with 
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and note that in the limit R -+ R the second term in parentheses is of second order 
in R-R by Variational Principle I, while the first simply reduces to 

Sn UZ 0 

$* lUl2 + PI2 ’ 
2ubRi 

then we immediately obtain 

(2.25) 

which result can also be derived directly from a simple regular perturbation 
calculation. This is the basis of the growth rate derivative calculation done by 
Shaumeyer et al. (1981). 

Similarly, if we are interested in how the effective sidewall thermal conductivity 
/l affects the stability, then we can substitute into I [v ]  the ground-state wavefunction 
pp corresponding to the given P, and show that 

which means Al(/3’) < A,(/?) when /Y > B. Because Courant’s minimum-maximum 
principle applies here, this result is immediately generalizable to all eigenstates, i.e. 

A,(/?’) < A#) for all j = 1,2, ... . (2.26) 

The same method applied to (2.22) yields 

R,(p’) 2 R M )  if 8’> P. (2.27) 

Again, in the non-degenerate case we can show that 

and 

(2.28) 

(2.29) 

by the same trick that led to (2.25), provided /? does not vary on a 0 .  The physical 
interpretation of these results is simply this : the system tends to become more stable 
if the thermal dissipation on the boundary, as represented here by the effective 
thermal conductivity /3, is stronger. The numerical work of Sparrow et al. (1964) has 
confirmed this prediction. A similar conclusion can be reached with respect to change 
of the parameter a. 

The physical interpretation given above, though necessarily true, nonetheless 
presents a small puzzle when one encounters it for the first time. The confusion arises 
because intuitively we expect the two cases /3 = & 00 to correspond to the same 
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FIGURE 1. Schematic plot of eigenvalues A, as functions of j? when the two extremes j? = - GO and 
,8 = + co are identified on a cylinder. The ring c corresponds to a state that is never perturbed by 
j?. Two runaway solutions for j?+-co are shown. 

situation in which the sidewall is a perfect conductor, since (2.17) should reduce to 
8 = 0 in both limits, yet (2.26) seems to indicate otherwise because the eigenvalues 
are predicted to be monotonically increasing (and thus never come back to their 
original values) when we tune /? from + co to - 00. The apparent paradox is easily 
resolved once we realize that this is just the manifestation of the well-known 
phenomenon of holonomy in differential geometry (do Carmo 1976, p. 297) or 
‘Berry’s phase’ in quantum mechanics (Shapere & Wilczek 1989), i.e. cyclic 
evolution of a system does not necessarily bring the eigenstates of an operator on the 
system back to their starting configuration. As will be shown in the following, some 
eigenvalues actually disappear into infinity when we vary /? from + 00 to - 00. 

Figure 1 shows schematically what happens for this cyclic evolution when /? is 
treated like the angular coordinate on a cylinder and the two extremes /? = k 00 are 
identified. 

The reason why, in the variational formalism, we can only take trial functions 
whose 8 vanish identically on a52 for a cell with a perfectly conducting sidewall is also 
clear in this light. As we tune Bl of 8+B1 aelan = 0 from 0- to 0+, several solutions 
are lost abruptly, and the numbering of the eigenstates is not preserved in this 
process. Just like in the case when the boundary condition is given by (2.17), we 
would expect the ordered eigenvalues to be continuous functions of B1 if it were 
possible to construct a variational principle that is valid for B1 in any open interval 
containing 0, thus allowing the use of trial functions whose 8 does not necessarily 
vanish on aa. 

Next, we proceed to investigate more closely the physically absurd case in which 
/? (or a) is tuned negative. This problem is of interest because it actually tells us 
something about what to expect when /? is positive ! (But the appreciation of this 
novel idea must wait until the end of 53.) The first point to note about the negative- 
/? regime is that at  least one eigenvalue (A , )  goes to + 00 when the /? of the sidewalls 
tends to - 00. (A similar result holds when we tune 01 to - co .) This is quite obvious 
if we take a trial function such that its temperature 8 does not vanish identically on 
the sidewall and then allow /? to go to - co. Inspection of (2.15) and (2.21) then shows 
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A, 2 Ip[y]  + + co as /3 tends to - M. The existence of these ‘runaway ’ eigenfunctions 
clearly is symmetry independent, i.e. there is a t  least one runaway solution 
associated with each type of symmetry when the convection cell possesses certain 
symmetries. It is also interesting to note that the above runaway solutions manage 
to disappear without jeopardizing the completeness of the whole set of orthonormal 
eigenfunctions by mimicking a zero vector y = 0 when p approaches - 00. This 
mimicry is achieved by developing a very thin thermal boundary layer near the 
sidewalls and suppressing the velocity field in the fluid. In  fact, this feature can be 
derived and the boundary layer width calculated very easily. First, we argue that for 
a very negative /3 the term ( v R ) ~ ,  in (2.7) must be much smaller than A,B in 
magnitude. Were this not true, the term (VR)i6V2 of (2.6) would become negligible 
compared to other terms in the same equation, thus implying the decoupling of the 
temperature and the velocity fields. But then a restricted version of (2.20) applied to 
the decoupled linearized NavierStokes equation, (2.6), alone immediately tells us 
that A, is bounded above and could never be made arbitrarily large when we tune p 
to - co , thus contradicting our assumption. This argument readily implies that the 
fluid velocity is strongly suppressed and is much smaller than the temperature 
everywhere in the cell. Next we take the dot product of (2.7) and 8 and integrate over 
the whole cell to yield 

(2.30) 

from which the presence of a thermal boundary layer is obvious because (i) the first 
term on the left-hand side is always negative, and (ii) the third term is negligible 
compared to the right-hand side. Hence, near the sidewall (2.7) can be approximated 
by 

(2.31) 

where s is the distance measured normally inward from the sidewall. Solving (2.31) 
subject to the boundary condition -aO/as+p8 = 0 yields 

e K eps (2.32) 

and h x p2, (2.33) 

which clearly indicates the existence of a thermal boundary layer of width S = - 1/B. 
The example studied in Appendix B (cf. (B 13) and (B 14)) verifies this prediction. 
We remark in passing that, because of continuity, the total number of runaway 
eigenfunctions does not depend on the value of a when we tune p. Combining the 
previously derived innocent looking results, finally we are able to show something 
that is less expected : 

PROPOSITION. Fix all the parameters save p. Assume A, is a degenerate eigenvalue of 
multiplicity k when p = Po for some Po. Then no matter what value p takes, A, is always 
an eigenvalue of multiplicity at least k -  1,  provided the total number of runaway 
eigenfunctions is 1 when /3+ - co . 

In  other words, these degenerate states are robust against perturbation by p when 
we have only one runaway solution. Again, we have a corresponding theorem for a. 

The idea behind this statement is very simple and can be appreciated best by 
looking a t  figure 2, which plots schematically the cigcnvalues as monotonically 
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Runaway 
solution 

B = +infinity B = P o  p = -infinity 

FIQURE 2. Monotonicity of A, with respect to j3 is shown with [ * . -1‘ end [. . .]” denoting, 
respectively, the eigenvalues for j3 = + w and j3 = - m. 

decreasing functions of p. Here we have arranged the eigenvalues in decreasing order, 
and have assumed very generally that the multiplicities of the eigenvalues are 
n,, n,, n3,. . . , respectively. The three cases p = Po (eigenstates shown in square 
brackets), B = + co (eigenstates represented by primed square brackets) and p = - co 
(double-primed square brackets) are shown in the same figure for comparison. From 
this picture we see that 

[l]” 3 * - * 2 [n,- 11” 3 [l]’, (2.34) 

(2.35) [n, + 11” 3 * * 3 [n, + n, - 13” 3 [n, + 1-y. 

Since the two cases /3 = & co correspond to the same physical problem of having a 
perfectly conducting sidewall, we must have 

[l]” = [l]’ (2.36) 

and [n, + 11” = [n, + 11). (2.37) 

Comparing (2.34) with (2.36) immediately shows that there are at least n,- 1 states 
in the first group which can never change their eigenvalues when /? varies. Similarly, 
inspection of (2.35) and (2.37) tells us that there is a degeneracy of at least n, - 1 in 
the second group, irrespective of what B is. Our claim can then be proved by 
induction. 

We should point out that the previous argument respects the symmetries of the 
system, too. In other words, the assertion is still valid if we consider only solutions 
with specific symmetry. As a matter of fact, the proposition is only useful when we 
can sort out the symmetries of the system first to guarantee the uniqueness of the 
runaway eigenfunction. An explicit application of this theorem will be given later 
when we investigate the size dependence of the convection problem. Another point 
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to be noted is that those eigenvalues which are not perturbed by /3 are highly 
exceptional, because (2.28) asserts that their temperature 8 must vanish identically 
on XJ. In view of the boundary condition for 8, (2.17), we see that this also means 
that aejan must vanish identically on 352, too. Not surprisingly, we will be able to 
show in the next section that even the eigenfunctions associated with these 
eigenvalues are not perturbed by /3 a t  all. 

We close this section with a brief discussion on the behaviour ofR, for a no-slip cell 
as b is varied. Despite the fact that most of the results and arguments for A, 
presented above work equally well for R,, there nevertheless exists a sharp difference 
between the two when /3 is negative. This is because the denominator of J[v] might 
vanish when /3 is negative, in which case Variational Principle I1 will experience 
difficulty. In  order to prevent this awkward situation from happening, we can only 
take negative ,8 which satisfies the following constraint : 

(2.38) 

We can derive a more useful criterion for the admissible p b dividing the numerator 
and the denominator of the right-hand side of (2.38) by fQ1812 and making use of 
(2.19) and the fact that 

where pll is the lowest eigenvalue of the two-dimensional thermal diffusion problem 
- Vg8 = pll 8 subject to the Neumann boundary condition on a horizontal cross- 
section of the cell. The final result is 

(2.39) 

(Notice that pll is non-vanishing only if we restrict ourselves to considering states 
with specific symmetry.) Equally important is that c1 and c2 depend on the geometry 
of the cell, and c2 becomes very large when the cell has a very small lateral dimension 
L. (Our derivation of (2.19), as given in Appendix A, in fact shows c2 cc L-' for small 
L.) This implies that the critical Rayleigh number R, is very small for a small cell if 
/3 can be made negative in a real experiment. This feature is also borne out in the 
example studied in Appendix B. Although we studied the negative-/3 regime mainly 
because it will provide us with an interesting way of deriving results for the 
physically more relevant case when /3 is positive, our conclusions nevertheless serve 
another purpose, namely, they clearly show that a model system can have a very 
different behaviour when the control parameters of the problem enter the unphysical 
regime. This caveat may be appropriate if, when applying the amplitude equation to 
model a system, one has to explore the different areas in the parameter space because 
the direct relation between the physical boundary conditions and the parameters of 
the model is not readily available. 

3. Perturbation theory, size dependence, and biological pattern formation 
In this section we will first develop a formal perturbation theory to deal with the 

change of stability when the sidewall properties are varied. Several examples are 
considered in order to illustrate the power of the perturbative approach. Then the 



Finite-cell RayEeigh-Bkn.ard convection 561 

effect of the system size is studied, with special attention directed to comparing the 
convection problem with the chemical reaction-diffusion model of spatial pattern 
formation in developmental biology. Finally, the analysis in this section is combined 
with those proved in $2 to derive the scaling behaviour of the onset Rayleigh number 
as a function of system size L. 

Let {Iy,)} denote the orthonormal eigenvectors of (2.8) subject to the boundary 
conditions (2.12)-(2.14), with B1 of the sidewall being set identically to unity. The 
corresponding eigenvalue for I y,) is denoted by A,. For any given non-degenerate 
eigenvalue A, we define the Green’s function by 

If we use a prime to stand for variables associated with the different thermal 
boundary condition ael/an + /3’0 = 0, then LyapunovSchmidt reduction of 
9 ~ ’  = A‘@ immediately gives 

where 6 is a 4 x 4 matrix with only one non-vanishing element B,, = 1, and #’ is the 
projection of p’ off the one-dimensional subspace spanned by yo. From the known 
solutions (v,, A,), one can compute (r’, A’) by the following iteration scheme whose 
convergence can be established by standard methods, provided 1/3’ - 81 is small 

An immediate consequence of this calculation is that the first equation implies 

a result we derived earlier in (2.28) based on the variational principle. 
When two states yl and yz are nearly degenerate we can define a Green’s function 
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and perform Lyapunov-Schmidt reduction on the two-dimensional subspace 
spanned by w1 and y, to obtain 

(3.8) 

(3.9) 

(3.10) 

This suggests the following iteration scheme of solving for (w; ,  A;)  and (yV;, A;) : 
(i) Lowest-order eigenvalue A’(1) is to be obtained by solving 

(3.11) 

This also determines 

where we have assumed b,, + 0 for simplicity. Our normalization convention can 
then be taken as x1 = 1.  

(ii) Iteration : 
w ’ l ( l )  = 0, 

(3.13) )I A, -AW+l )  - bll - bl, 1 $,*(B’ - P )  r: &’*‘l’ ( 4 2 1  A,-A’(l+l)- b,, )(.$l+l)) = ( $ a d 8  -P) wt Bw’L(L) 

~ ’ l ( l + ~ )  = JaQ(/3’ - P) G,w &’(l), 

r’(l) = v1 + x$l)  1, + w ’ l ( l ) ,  

where X L ~ + ~ )  and 
To show how this perturbation scheme can produce sharper results than the 

variational principle alone, we simply note that the eigenfunctions associated with 
those exceptional eigenvalues studied in $2 which are not perturbed by a varying 1 
are actually not affected by P, either. This is almost trivial from (3.5), because the 
vanishing of both 6’ and ae/an on aG? guarantees that the eigenfunction remains the 
same up to any order of iteration. (In case of degeneracy, we can apply (3.13) or 
resort to a continuity argument to show that the same conclusion still holds.) 

To give another example, let us study how the stability of a convection cell with 
a smooth, rigid, and perfectly conducting sidewall is affected by the size of the 
system. Assume SZ’ is a cell that is completely inside a slightly bigger cell B. A 
Lyapunov-Schmidt reduction yields 

are solved by the matrix equation shown above. 

- aw’ 

J m w w  ’ 

Jan. rt D 
(X-A,)  = (3.14) 

(3.15) 
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where we have extended the definition of y' by setting y' E 0 outside Q', and 
y' EE yo + w'l. Here aQ' refers to the sidewall alone, and notice the volume integral 
is over 8'. These equations suggest the following iteration scheme for solving the 
solutions for sz': 

(3.16) 

With the formalism at hand, we can show that the eigenvalues of the primed and the 
unprimed systems satisfy A, > A; for j = I ,  2 . .  . . In other words, 8' is strictly more 
stable than 0. (Notice this result can be trivially translated in terms of R, by virtue 
of (2.25).) To make our argument simple, we will assume without loss of generality 
that the two cells almost coincide, and that the state under consideration is non- 
degenerate. 

First, if ay,/an is not identically zero on a&?, then the lowest-order iteration of 
(3.16) yields 

where 8 is the inward normal distance from a point on 38 to aG?'. This clearly is what 
we set out to prove. So we only need to consider the remaining possibility that avo/an 
= 0 on 852. If this does happen, then the next order iteration of (3.16) yields 

But a closer look at this case shows that ' = '  is never attained in the above 
expression. In fact, the equality can hold only if yo = ayo/an = ae yo/ann2 = 0 on the 
sidewall. Yet upon rewriting the original fluid equations ((2.8) and (2.3)) in local 
coordinates near the sidewall, one immediately arrives at the following initial-value 
problem for fluid variables as functions of 8 :  

where fl and f2 are 'driving terms ' which (i) only involve lower-order derivatives in 
s and derivatives along the sidewall, and (ii) vanish identically on the sidewall if 
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FIQURE 3. An intermediate cell Q” = EFGH is introduced to allow one to compare 
the stability of 52’ = ABCD and SZ = IJKL. 

yo = ayo/an = a2y0/an2 = 0 on it. This implies that y = 0 inside 52 after integrating 
along 5 ,  thus contradicting our assumption that y is an eigenvector. Therefore, ‘ = ’ 
can never be attained, and the claim is verified. We emphasize again that the 
variational principle itself does not offer a simpler proof for this case, because the 
trial function for the smaller domain must be carefully chosen to take care of the 
O ( 2 )  possibility we treated above if strict inequality is to be proved. We should also 
point out that although the previous argument assumes that the sidewall is smooth, 
thus excluding rectangular cells that are commonly used in experiments, we can 
easily modify the proof to cover the case when the relative stability of two 
rectangular cells is the subject of interest. The idea is to compare them with an 
intermediate rectangular cell 52“ whose two pairs of parallel sidewalls are each in 
contact with the sidewalls of a and SZ’, respectively ; see figure 3. 

The previous result already gives us a hint that somehow the presence of the 
sidewall has the effect of stabilizing the convection system. However, it  still is not 
general enough in the sense that it is only proved under the assumption that the 
sidewall is perfectly conducting. What can we say if the sidewall is not a perfect 
conductor ? As it turns out, the sidewall still has a stabilizing effect on the system, 
but we cannot expect to see the same monotonic behaviour, because another 
competing factor due to the convective rolls trying to fit themselves snugly into the 
cell is acting. Roughly speaking, the system is more stable if its dimension is such 
that an integral number of convective rolls can be accommodated completely into 
the cell. In other words, we would expect to see an oscillatory behaviour if we plot 
the growth rate (or the critical Rayleigh number) as a function of the system size. 
The stabilizing effect coming from the thermally dissipative nature of the sidewall, 
though always at  work, may not be strong enough to wipe out this background 
oscillation. A look at figure 11 (Appendix B) immediately convinces one that this is 
indeed the case. In the following, we plan to work out the precise meaning of this 
physical interpretation by analysing a rectangular box as an example, and then 
relate this observation to one mechanism that has been proposed to explain several 
pattern formation features observed in a developing embryo. 

Let SZ be a rectangular box whose x-dimension is L. Stretch 52 by a factor 1 > 1 in 
the x-direction to obtain a larger box 52’. Assume the boundary conditions for both 
boxes are (i) the two horizontal plates are rigid or free slip, and perfectly conducting, 
(ii) aB/an+@ = 0 (/3 > 0) on the sidewalls, and (iii) u = 0 on the sidewalls. Then the 
claim is that there exists an 1, such that Rf < Rf for all 1 > 1,. To see how this finite- 
size stabilizing mechanism is caused by the thermal property of the sidewall, we first 
observe that we will lose no generality in assuming that 0 does not vanish identically 
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FIGURE 4. N copies of identical box Sa = ABFE are joined lengthwise to fill up cell Q' = ABCD, 
with an unfilled gap 62, = GCDH. 

on the two sides that are orthogonal to the x-axis, because that case is already 
covered by our previous discussion. We now try to fill up 52' by placing side by side 
as many copies of 52 as possible. In  general there will be a gap 52, left that is too small 
for any copy of Sa to fit in; see figure 4. Assume it takes N copies Sa,,52,, ... ,,QN to 
almost fill sd'. Next, we construct a trial function y' for 52' in the following manner : 

(i) Inside each of Q,, Q,, Q,, . . . we simply take the ground-state wavefunction y of 
5) as y'. 

(ii) Inside each of Q,, Sa,, Sa,, . .. we define p' to be the reflection of p with respect 
to the wall common to its neighbouring cell. 

(iii) In  the gap 52, we define v' as I0 = 0 and #(x, y , z )  = B(N,L, y , z ) .  
Note that the 'kinks' of y' across the cell walls can be smoothed out and present 

no real difficulty to our argument. Then 

-- 1 w$, IW2 + P O I 2 )  + q , B  le12 
J%I - mSl2 u, 6 

(3.17) 

By Variational Principle I1 we see this implies that Rf > Rf' for all large enough N, 
and hence the claim is verified. Clearly, this also is true if 51' has a much larger 
dimension than 52 in both the x- and y-directions. The main point to be made here 
lies, however, in (3.17), which says that thefinite system is more stable than an infinite 
system by an amount that is about what the boundary contributes in the variational 
expression fm R$ . 

As was remarked before, our inability to prove strict monotonicity for all 52' bigger 
than Sa in the previous argument stems from the fact that oscillatory behaviour does 
indeed exist when Q' is not much bigger than 52. What is interesting is that this 
oscillation can be viewed as the remnant of a very special spatial pattern selection 
mechanism, the Turing instability (Turing 1952), that one encounters in develop- 
mental biology. To see the connection between the two, we recall in the study 
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of biological pattern formation that one usually analyses the stability of the 
following model (see, for example, Murray 1989, chaps. 14, 15) 

D v ~ w + A ~  = A W  in 9, (3.18) 

(3.19) 

where vcWm is an m-component cheyical concentration field in a 'cell' 52, and D, 
A, and B are m x m matrices. Usually D is a (positive definite) diagona! matrix which 
is comprised of the diffusion constants of the chemical species, and B is identically 
zero when no-flux boundary condition is assumed. 

This problem can be solved analytically for the no-flux boundary condition by 
taking the solution to be of the form 

W = w, 
where p is some m x  1 constant vector, and 
subject to the Neumann boundary condition : 

V'+p = - p p  in 

(3.20) 

is an eigenfunction of a Laplacian 

0, (3.21) 

% = o  an on a a  
Substituting (3.20) into (3.18) we get the dispersion relation 

(3.22) 

det ( -p f i+A- /h)  = 0. (3.23) 

When the control parameters in the matrix A are suitably adjusted, there will only 
be one branch of solution that becomes marginally stable when p equals some value 
p,. For all other p the associated growth rate h will have a negative real part, and 
that corresponds to a stable configuration. Because p scales in size L like L-e, a cell 
that expands indefinitely will lower the p of each mode, thus allowing different modes 
to become unstable in succession when their respective p decreases and passes 
through p,, and only to recover their stability again after further expansion. Thus, 
a plot of the real part of the growth rate h versus L for this scenario looks very much 
like figure 8 (a) (Appendix B). The most prominent feature of this figure is the many 
intersections between different curves. This signifies the constant switching of 
unstable modes as one increases L. In fact, this characteristic is also shared by the 
convection system if the sidewall boundary conditions are properly (but artificially) 
assumed. Our next task is, therefore, to bring out the connection between the two 
systems, and then make very good use of this peculiarity later when we try to deduce 
the scaling behaviour for R,. 

The best way to see the similarity between the biological model and the convection 
problem is to note that for a convection cell whose a is identically zero on the 
boundaries and whose sidewalls are perfectly insulating, we can adopt an ansatz that 
is closest to the above method in spirit by writing the solution y to the problem as 

(3.24) 

p=irP, 
where a,az,g and p are constants to be determined by the boundary conditions 
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imposed on the two horizontal plates, and cp satisfies (3.21) and (3.22). Upon 
substitution of (3.24) into (2.6), (2.7) and (2.3) one obtains 

(3.25) 

where we have separated out z-dependence by introducing a2tp/az2 E -pztp for some 
appropriate constant pZ. Solving (3.25) for h we get 

, (3.26) 
A - - 1 - v & { (I  + u ) ~  - 4a[ 1 - ( R / p z )  (1 -,4//4)]>~ 

P 2 
- - 

from which we see that the pattern selection mechanism described before for 
biological systems works equally well here if we tune R to R,, = min pa/(p-pz).  

This ansatz is particularly suitable for a one-dimensional problem, and in figure 
8(a)  (Appendix B) we show the h versus L plot for this case when R = R,, = Yn4. 
Again, readers are reminded to pay special attention to the many intersections 
between different modes. When we change the viscous and/or thermal properties on 
the sidewalls the intersections generally will break up and form many oscillations, as 
shown in figure 8 ( b ) .  This clearly justifies our calling the wavy curves remnants of a 
special biological pattern selection mechanism. The implication is that Rayleigh- 
BBnard convection can be thought of as a canonical pattern formation problem 
that bears features that some more specialized reactiondiffusion models possess. 

At  this point it is only fair for us to stress that the applicability of the previous 
ansatz, (3.24), to a three-dimensional cell is not as simple as it sounds. The problem 
is that this trick is manifestly equivalent to solving the coupled equations by the 
method of separation of variables, which requires the vertical vorticity of the 
eigenfunctions we are interested in to vanish, a point that is addressed by Joseph 
(1976) and discussed more fully in Appendix C. Yet this is not guaranteed for the 
problem at hand. Fortunately, this difficulty does not exist for a large three- 
dimensional cell whose two horizontal plates satisfy either the more general 
boundary condition (2.16) with a positive a or the physically realizable rigid 
condition, provided that we adopt the following more general ansatz when the 
sidewall is rotation-free and insulating (the subtlety involved and the validity of this 
method are discussed in Appendix C): 

(3.27) 

p = m .  

Here, Q, is the eigenfunction of the two-dimensional Laplacian on the horizontal 
cross-section of the cell subject to the Neumann boundary condition ( V ~ Q ,  = -w), 
and a, az, e and p are functions of z properly chosen so that the governing equations 
and the boundary conditions at z = 0 , l  are satisfied. Once again, this ansatz will give 
us a (slightly more complicated) determinantal equation which allows us to write the 
growth rate h €or the most unstable branch as a function of p and R :  A = h(p ,R) .  
When R equals R,,, the critical Rayleigh number for an infinite cell, there is only one 
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value of y (denoted by y, from now on) which can make h vanish. For other choices 
of y the corresponding h is always less than zero. It is in this respect that we clearly 
see how the model biological system is intimately related to the convection problem. 
But more interestingly, later in this study we will even take advantage of the 
simplicity of this ansatz and derive from it a scaling property for the critical 
Rayleigh number R, that actually holds for almost all boundary conditions (the 
physically realizable cases included) ! 

Despite our showing the similarity of pattern generation between convection and 
biological systems, there exists a difference in which the incompressibility of fluid 
plays some role. Specifically, if we consider tke eigenvalue problem of the biological 
model ((3.18) and (3.19)) with a self-adjoint A and a positive semidefinite 6, so that 
the governing equation will look very much like that for the convection problem (cf. 
(2.9)) except that the pressure term is absent to account for the fact that we do not 
have an incompressibility constraint for this system, then we can show that the 
growth rate, which must be real-valued because of our assumptions, displays no 
oscillatory behaviour as we stretch the system in some direction. As a matter of fact, 
the system simply becomes less stable when we stretch it. Because of its intrinsic 
interest, and because this is not the same as a similar statement which holds true for 
domain expansion of any kind when the Dirichlet boundary condition is imposed,t 
we shall present a sketch of the argument in what follows. 

Suppose Q’ is a cell obtained by linearly stretching Q in the x-direction by a factor 
1 > 1, then we claim that A; 2 A, for all j. To facilitate the proof, we observe that this 
eigenvalue problem is equivalent to the variational principle of the following 

Now take the ‘ground state ’ y ( x ,  y, z )  for the cell Q (so that A, = Kn[v ] )  and define 
a trial function y’ for the stretched domain Q‘ as ~ ’ (x ’ ,  y‘, z’) = y(z‘/E, y‘, 2‘). Then for 
any function f(x, y z )  we have 

J/(x, y, z )  dx dy dz = - f - , y’, z’ dx‘ dy’ dz’ ;Ifl (? ) 

where fl(z’, y‘, z’) = f(x’/l,  y‘, z’), and similarly 

We also have 

where 0 (el) is the angle between the surface area element of 
plane. Hence 

(aQ’) and the (y, 2)- 

t One should recall that a smaller membrane subject to the PvTeumann boundary condition is not 
necessarily more stable than a larger one; see, for example, Courant t Hilbert (1966). 
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CV, z) plane 
FIGURE 5. Side view of a small segment AB of boundary aa and its stretched version AB’ 

on aW. A and A‘ are identified for convenience. 

But from figure 5 we readily see that 

cos 8’ A ~ / [ ( A s ) ~  + (ZAZ)~]; 
cos 8 As/[(As)’+  AX)^]^ 1 - = I  > 1, 

thus, ZSsQ f 2 Sam f I, iff is non-negative on aB. Combining all the previous results, one 
obtains 

A, = K*[cVl 
-$”’p”DV’yd+$,. y/’+A+--Ssw y/tByf’ 

Sfr Wtt r’ 
< 
< A;, 

by the variational principle. Finally, to show that this is actually true for all the 
excited states we can simply invoke the minimum-maximum principle. 

To summarize : the model described above cannot be a candidate for Turing type 
biological pattern formation, because the incompressibility condition is not present 
in this problem to prevent us from ‘dilating’ the original solution for B to produce 
a state of lower stability for the larger cell a’. Besides, this new less stable state is 
not a result of switching of modes that is sought in the standard model. In  contrast, 
the corresponding fluid system, which must satisfy the incompressibility condition, 
can remain in the most unstable state only if it  constantly switches to a new mode 
with an extra convective roll to account for the extra room gained as a result of our 
stretching of the cell. This also partially explains why in our earlier analysis of the 
finite-size effect we had to put identical copies of smaller cell D side by side in order 
to construct a good trial function for the stretched system B’. 

We now concentrate on the scaling behaviour of R, when the cell dimension L 
varies from 0 to + a. 

The small4 behaviour can be easily extracted from the fact that the critical 
Rayleigh number corresponding to other boundary conditions is no smaller than 
p3/(p-pz),  the critical Rayleigh number for the same cell with a = 0 everywhere on 
the boundaries and f l =  0 on the sidewalls, thanks to the analysis of $2. Thus 

(3.28) 

for small L, because ,u scales like L+. We can also see this from (2.23) because each 
of Vu and V8 contributes a L-’ factor when L is small. Since this small-aspect-ratio 
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problem is ‘trivial ’ in this respect, and is already well documented in the literature 
(Verhoeven 1969; Yih 1959; Hales 1937), we will proceed to study the large-L limit 
for the rest of this section. 

We have not been able to prove with complete rigour that for a large cell of 
arbitrary geometry the difference between R, and its infinite-cell limit R,, is of order 
L-,, though a very plausible argument is presented below to show that this is indeed 
the case. The idea is to study the scaling property of a cylindrical cell first, and then 
compare cells of other shapes with this fiducial one to establish that in general the 
geometry will not alter the scaling law. The examination of the scaling behaviour of 
the cylindrical cell itself will be broken down into two steps. (i) We will consider a cell 
of radius L which has an insulating sidewall and an a that is identically zero on af2. 
This simple example will provide us with enough motivation to ask if the features we 
learned from it carry over to the more realistic problem in which both horizontal 
plates are rigid. (ii) We then show that, indeed, the basic features we observed in the 
previous example do not change appreciably for the more realistic cell, and, as a 
result, R,-R,,  for any cell having rigid bounding walls scales like L-,, with a 
prefactor that is practically independent of the azimuthal quantum number m. 

Consider, therefore, the zero vertical vorticity states of a side-insulated cylindrical 
cell of radius L. Assume a is identically zero all over aQ. Then we have, in cylindrical 
coordinates, 

y = sin nn(z+$)eim@ J, k m V j  , (3.29) 

where m, n are integers, J, is the Bessel function of order m, and k,., is the j th  root 
of dJ,(p)/dp = 0. The corresponding A versus L curves for fixed m and n look very 
much like that shown in figure 8 (Appendix B) when R = Rco. It is clear that at the 
intersection of any two curves we can.find a state y1 in the two-dimensional 
degenerate subspace such that y1 = @Jar = 0 at r = L. This means that the state 
satisfies 0 = ae/ar = 0 on the sidewall, thus implying it will never be perturbed by /3 
from our previous discussions. We will call it an ‘anchored state’ in what follows. 
In addition, this implies that there is only one runaway solution when /+-a. 
Hence the most unstable eigenstate for a cell with a = 0 and a conducting sidewall 
is bounded below by the second unstable state of a cell with an insulating sidewall, 
a result that can be seen by the same reasoning used in proving the Proposition in 
$2. But it is easy to verify that the second unstable curve A, in the A us. L plot is 
monotonic between the two anchored states that are intersections of curves 
corresponding to k,.,, km3,+l and k,.,, km,j+2, respectively, because each of these 
curves is locally quadratic in L.  By the asymptotic expression (Morse & Feshbach 
1968) 

J,(Z) x (nm tan y )  cos (m(tan y-y) - in)  (1 6 z = m sec y ,  o < y < in) 

( 8 

2 4  

(3.30) 
one can derive 

and from this formula and (3.26) we conclude that A, = O(L-,) for large L. Hence, the 
effect of perturbation on the sidewall thermal property is always of O(L-2). 
Translating this result in terms of R,, we immediately have R,-R,, = 0(Lv2). 
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Similar analysis shows that perturbing the sidewall viscous boundary condition for 
the m = 0 modes has the same effect. However, it is to be noted that simultaneous 
perturbation by a and /3 immediately destroys the anchored states. Also, we do not 
have any control on m + 0 modes when we vary a. This apparent difficulty can be 
easily handled once we realize that there are states that behave virtually like 
anchored states under any perturbations, an interesting assertion that will be made 
precise below for a rigid-rigid cell as demonstration. 

For a cell with two rigid horizontal plates we have to use (3.27) as the unperturbed 
system and tune a and /3 of the sidewall to study their effects. In contrast to the 
previous case, we do not have any anchored states this time, becausej, the quantum 
number that characterizes the number of rolls in the radial direction, is coupled to 
the z-dependence of the eigenstates, thus preventing us from constructing a linearly 
superposed state out of the two intersecting solutions to satisfy 0 = 0 or u = 0 at 
r = L ,  as the case may be. However, we do have states that are practically anchored 
for all positive a and /3! To understand why this is so, consider states that have the 
same number of vertical rolls. (In reality, only the states of one vertical roll are of 
interest to us.) Fix R to be Rcm. Again, for a given m, the intersecting solutions at 
L = Lint correspond to those that have different j values. In particular, the most 
unstable intersections consist of two solutions whose j values differ only by one. By 
(3.30) and (3.31) we see [Jm(km,5+l)+Jm(km,5)l  = O(l/Lint) at the very worst. 
Therefore, up to a phase, the intersecting solutions differ at most only by O(l /L ,J  
on the sidewall. Equation (3.12) then tells us that one of the perturbed eigenstates 
will have 0 almost zero on the sidewall, because it is almost proportional to 
Jm(ky,5+l)+Jm(km,5). By (3.3) and (3.4) we see that this state, in turn, must remain 
practically fixed during the process of perturbation. More specifically, its per- 
turbation will be O(L-’) smaller than that experienced by other states or states of 
different L. We would like to emphasize that our argument clearly is very general and 
applies to simultaneous perturbation of a and /3 as well. For example, we can choose 
a = tan ($/3/B0) and let /3+P0. The final configuration then corresponds to a cell 
with a rigid sidewall whose thermal property is characterized by aepn +Po 0 = 0. 

We now examine what happens when maximal perturbation is achieved, i.e. 
a = /3 = + GO. The previous argument plus an earlier assertion about the strict 
decrease of stability when we expand this system implies A = - O(L-2) monotonically 
in L .  In fact, the proportionality constant can also be computed in principle, because 
the locations of the practically anchored states can be well approximated by the 
intersections of the unperturbed curves, which themselves can be computed 
analytically. To compute this prefactor, we note that, for a given m, the system size 
Lj which renders A = 0 must be solved from 

k $ . j / L ?  = Pc- (3.32) 

(Notice that the left-hand side is just the eigenvalue of the two-dimensional 
Laplacian -Vg.) For a large cell the difference AL between L5+1 and L, is well 
approximated by 

9 (3.33) 

and so the intersection of t h e j  and t h e j  + 1 curves occurs at L = L,, = Lj + (+AL), i.e. 
midway between L5 and L,,,, as can be checked by solving 

1 k m . j + l -  ‘ m . t  
hL - (kk , j+ l -kk , j )  

2PcL5 P! 

(3.34) 

19 FLM 241 
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where we have expanded the j curve about Lj and the j+ 1 curve about L,,!, 
respectively. Likewise, the growth rate at the intersection can be computed, and is 
given by 

Since km, j+  1 - km, j  x 7c/sin ym,, ,  we conclude that in the large-cell limit we must 
have 

(3.36) 

In fact, we even expect the A ( L )  curve to be well approximated by Aint(L), i.e. L, is 
replaced by a general value of L in (3.36), because of the monotonicity of h(L) 
appropriate for the particular boundary conditions imposed. This clearly shows that 
the most unstable solution for a cylindrical cell with a rigid conducting side is given 
by 

(3.37) 

which corresponds to a very small m, because then Y ~ , ~ + $ T .  But we must quickly 
add that this does not mean that the m = 0 mode is necessarily the most unstable 
mode ! Our argument cannot resolve the stability of the small-m modes. The best we 
can say is that m/j for the most unstable configuration tends to zero in the large- 
aspect-ratio limit. To our knowledge, numerical confirmation of this prediction is still 
lacking at this time, though interesting results have already been reported by 
Charlson & Sani (1971). 

To understand why in general we still expect to see the same scaling behaviour 
when the sidewall properties are different from the case we have just studied, we can 
start with this known solution and perturb the boundary conditions backward. This 
time the unperturbed curve h(L) is smooth, as opposed to the analytically solvable 
case in which the most unstable mode exhibits a strong oscillatory behaviour and has 
a kink at  every intersection, and we conclude that the effect of the perturbation is 
at most of order O(L-3), because all the practically anchored states are perturbed by 
O(L-3) only. This is true for perturbations of the type given in (2.13) and (2.14) when 
a and p are tuned from + co to any finite positive values. 

The implication of this argument is: if we turn on the perturbation from the 
analytically solvable case (a = p = 0 on the sidewall) by a small amount, say 
ae/an+pO = 0 for some very small but fixed p > 0, then there must be a cross-over 
size Lc-,, above which A(L) = A,,(L) +O(L-3) is valid. In other words, no matter how 
small the perturbation is, not only will the large-L section of the A(L) curve never 
touch the L-axis again, but it will also be replaced by a smooth curve that is 
practically independent of the strength of the perturbation. That smooth curve is 
well represented by (3.37). Of course, Lc-o will depend sensitively on how strong the 
perturbation is - the smaller the perturbation, the larger L,-,, becomes. 

All the previous predictions concerning the behaviour of h for a cylindrical cell can 
be easily translated in terms of R,. What is worth emphasizing is that our argument 
is essentially one-dimensional since m does not introduce any uncontrollable 
complications, and, thus, not surprisingly, the system bears all the features of the 
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FIGURE 6. Log (Rc-Rcm) va. log (L) for a rigid cylindrical cell with conducting sides (top curve) 
and insulating sides (wavy curve). Data taken from Cherlson & Sani (1970). 

example we study in detail in Appendix B. Interestingly, this prediction is verified 
in Charlson & Sani's (1970) numerical calculation, though they did not address this 
scaling behaviour. In figure 6 we show the log-log plot of R,-R,, V 8 .  L for the 
axisymmetric state, with data taken from their tables 1-3. As can be seen, the slope 
is 2, an unmistakable signature of the L-, scaling. In fact, analysis based on the 
amplitude equation also gives the same prediction (Ahlers et al. 1981 ; Cross et al. 
1983), a result that should be contrasted with that derived by Chana & Daniels 
(1989) for a rigid rectangular channel. 

For a cell Q of arbitrary geometry we can find two concentric cylindrical cells B, 
and 52, such that 52, c a c B,. Suppose the three cells all have a rigid and perfectly 
conducting sidewall, then the above analysis for cylindrical cells and the fact that a 
smaller cell with this sidewall property necessarily is more stable than a bigger one 
imply that R,-R,, for 52 must obey the same L-, scaling law. (As an aside, we note 
that Ostrach & Pnueli 1963 actually applied the same kind of comparison theorem 
to compute bounds for convection cells of more practical configurations.) To derive 
the same conclusion for a rigid cell with an imperfect conducting side, we can perturb 
the sidewall parameter @ from ,8 = + co. If B does not possess any symmetry that 
causes degeneracy in this (unperturbed) most stable configuration, then the effect of 
boundary perturbation is expected to give rise to an O(L-3) effect, and our basic 
conclusion will not change. The same idea can also be applied to a convection cell 
with symmetries once we realize that the annoying degeneracy due to the intrinsic 
symmetry of the problem can be avoided if we treat each class of symmetric solutions 
separately. Therefore, it is expected that the L-, scaling and the immediate 
destruction of the large-L wavy 'tail' of the A ( L )  curve under perturbation from the 
analytically solvable case in which the sidewall is rotation-free and insulating are 
generally true. 

As a final remark, we observe that the L-2 scaling we derived above together with 
(3.17) suggest that the temperature (and velocity as well, if we include an a term in 
it to make it completely general) must drop to at least O(L-l) near the sidewall for 
general boundary conditions. Although we only derived (3.17) for a rectangular cell, 
it clearly holds for cells of other shapes aa long as the sidewalls do not become too 
rugged. This can be seen by perturbing the boundary of a rectangular cell: one can 
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FIGURE 7. Local Cartesian coordinates x, y, z are chosen such that the origin 0 is at  the intersection 
of temperature nodal surface OABC and the lower edge of the convection cell, and the z-axis is 
tangent to the sidewall. 

derive formulae similar to (3.13) to show that the perturbation to the eigenstates is 
always of O(L-2) near the sidewall and cannot alter our observation. Again, the 
amplitude equation for a one-dimensional problem gives the same prediction (Cross 
et al. 1983). Our analysis, therefore, not only gives an independent verification to that 
approach, but also predicts that this phenomenon is generally true for a three- 
dimensional convection cell. 

4. Convective rolls near the sidewalls 
It is observed that in the visualization of stationary convection patterns using the 

shadowgraphic technique the convective rolls tend to align themselves normal to the 
sidewalls (Croquette 1989a, b ;  Croquette, Mory & Schosseler 1983). However, the 
interpretation of this observation is not immediately clear because the light rays 
projected on the screen above the cell to form the observed patterns necessarily have 
to go through a series of focusing and defocusing processes caused by density 
variation when they pass through the entire fluid layer. A sensible definition of a roll 
that is theoretically simple and experimentally justifiable does not seem to exist at 
this moment. With this precaution in mind, and in view of the fact that intuitively 
we know the density variations on the two sides of a convective roll, whatever its 
definition may be, must be opposite in sign to account for the rising and sinking fluid 
motion about the roll axis, we have decided to take a simplistic approach of 
identifying the nodal surfaces of the density variation with typical convective rolls. 
This necessarily makes this section somewhat controversial, though we believe it still 
offers some insight into what is observed in the laboratories. By the assumed 
linearity between temperature and density, this means the nodal surfaces of 0 will 
represent convective rolls in our convention. 

For a time-independent fully nonlinear solution, (2.2) reduces to V28 = 0 on the 
boundary, provided the sidewall is rigid, a condition we shall assume throughout this 
section. For the given nodal surface OABC of 8 in figure 7 we choose a local Cartesian 
coordinate such that the origin 0 is on the lower edge of the container and x is 
parallel to the sidewall. Because B = 0 at z = 0, we can expand 0 in powers of z and 
write 

(4.1) e = jz + p a  + 0(2* ) ,  

where f and g are functions of x and y, and we have used the fact V2B = 0 a t  z = 0 
to eliminate the O ( 2 )  term. Therefore, we see that to the lowest order the nodal 
surfaces of 8 are given by z = 0 (the bottom plate) andf(x,y) = 0. Notice that the 
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latter implies that OABC is orthogonal to the bottom plate. Similarly it must be 
orthogonal to the top plate. 

Next, we investigate the behaviour of OABC near the point 0. Expanding 
f = ax + by + (higher-order terms) and imposing the thermal boundary condition 
ae/an +/3eJy--o = 0 one obtains b = 0. Thus to  the lowest order 8 = uxz near the origin. 
The case a =+ 0 implies OABC is also orthogonal to the sidewall near point 0. 
Parallelism of nodal surfaces to the sidewall corresponds to a non-generic case in our 
analysis. 

It is clear that the nodal surfaces still behave the same if the system is evolving 
according to  linear stability analysis. The argument is also valid for binary fluid 
convection when the Dufour effect can be neglected, because then the thermal 
equation is the same as (2.2). 

The implication of the previous argument seems to be: if the nodal surfaces of 8 
more or less correspond to the convective rolls one observes in experiments, then, so 
long as the boundary condition (2.14) is a good approximation to the real sidewall, 
the orthogonality of rolls to the sidewalls is a simple consequence of the imposed 
realistic boundary conditions which render the governing equations linear close to 
the boundary. We should also point out that our orthogonality argument is 
compatible with the analysis done by Cross (1982) that is based on the amplitude 
equation approach. Although his conclusion is that it is possible to have rolls that 
end at any angle to the sidewall (when viewed a distance away from the wall), it is 
also suggested that the excitation of the conjugate rolls at the wall is a necessary 
consequence of the imposed boundary conditions. In  fact, the interference at the 
sidewall between the slowly decaying conjugate rolls sin (k, z- k, y) and the incident 
rolls sin (k, z + k, y) simply generates a cellular pattern sin k, x cos k, y whose nodal 
surfaces are orthogonal to the sidewall. The agreement of both approaches indicates 
that the range of validity of the orthogonality is at least of order O(1). However, we 
must admit that our treatment is limited because it cannot explain rigorously why 
experiments using Doppler anemometry or other visualization techniques still 
observe rolls ending perpendicular to the sidewalls (Gollub & Steinman 1981 ; Berg6 
& Dubois 1980; Somerscales & Dropkin 1966), though intuitively we feel that the 
correlation between u, and 8 should imply the orthogonality of the former to the 
sidewalls if the latter exhibits this feature. As pointed out by one referee, the 
situation is even more complicated in binary fluid convection since the concentration 
can also change the index of refraction of light. Clearly, more theoretical investigation 
is awaiting us before this simple-looking phenomenon can be fully explained and 
understood. 

5. Conclusion 
We have demonstrated that the combination of variational principles and 

perturbation theory can help us understand the linear stability of pure-fluid 
convection in a very general manner. When the geometry of the convection cell is 
fixed, sidewall properties affect the stability in a monotonic way. We also show that 
the effects of system size on the stability can be satisfactorily analysed vie the 
existence of virtually anchored states when the cell has high symmetries. In 
particular, we have applied this idea to a cylindrical cell to demonstrate why the 
critical Rayleigh number must approach its infinite-cell limit through an scaling 
law. The same conclusion holds for a cell of other geometry so long as the curvature 
of its side scales like L-l. This analysis is facilitated by two facts : the first is that the 
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variational principles allow us to compare the stability of two cells of different shapes 
for certain physically realizable boundary conditions, and the second is that the 
equally powerful boundary perturbation technique bridges the gap left untreated by 
the former. The method we introduce, though unconventional amongst the fluid 
dynamics community, is reminiscent of the geometrical concept of ‘Berry’s phase ’ 
whose theoretical and experimental importance in quantum mechanics is under 
intensive investigation. One merit of our method is that it links together the 
convection problem and another canonical pattern formation model, the Turing 
mechanism, and shows that both systems exhibit similar features. We also suggest 
the possibility of identifying convective rolls with the nodal surfaces of the 
temperature field 8, and offer a simple explanation for why convective rolls tend to 
bend normally toward the sidewall. It is our hope that, through this detailed study 
of the boundary effects on the onset convective instability, the role of the bounding 
walls is further clarified so that future work on other more complex problems, such 
as rotating convection, will reveal the mutual interaction between the boundary and 
the extra complications introduced in a more comprehensible way. 

I would like to thank Professor M. C. Cross for the many stimulating and helpful 
discussions. 

Appendix A 
In this Appendix we will show how (2.19) can be derived from the well-known 

commutation relation between the momentum operator P = (l/i)V and the position 
operator t in quantum mechanics, thus establishing a link between it and the famous 
Heisenberg’s uncertainty principle. The Hilbert space consists of ‘ wavefunctions ’ g 
defined in a finite domain Q which satisfy the Neumann boundary condition. (This 
restriction will be lifted after the main idea of the proof is introduced.) First, we note 
that for any vector-valued potential energy operator V(r)  = nV(r) ,  where n is a unit 
vector field and V is a scalar function, the commutation relation becomes 

V - P - P .  V =  iV- V. 

If we now operate (A 1)  on g and take the inner product of i t  with g, then we obtain 

(A 1) 

i(glV. us> = (91~.PIg>-<gIP.ug> = (VgIPs>-(PgI Vg>. 

i (9 IV. u g> = i (9 In*VJI g> + i (9 IW.4 g> 

li (9 In.Vvl s>l = I -i (9 II’V-nI 9) + ( Vg IPS) - (PSI Vg>l 

G I(9 I - n b>l+ I ( vg I Pg>l+ I(Ps I Vg>l 

G I (glm.nlg>l+2(hl  vg>w?lIPg>4 

We also have 

by definition. Together, they imply 

where the last step is by Cauchy-Schwarz inequality. Written out explicitly, it 
becomes 
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Suppose S is a surface that divides 8 into an interior 8, and an exterior region 8,. 
Choose n to be a vector field such that the outward normal on S coincides with it, and 
define V to be identically zero in 8, and unity otherwise; then after dividing (A 2) 
through by sQg2 we arrive at  

which is essentially (2.19), because the average values (P) and I(VV.n)l evidently 
are bounded above by some constants which are independent of g. Note that 
imposing the Neumann boundary condition on g is unessential for (A 3) to hold. This 
is because under the surgery of flattening it out near al2 any function can be easily 
made to satisfy the Neumann boundary condition, and the inequality expressed in 
(A 3) is not modified by this procedure. Equation (2.19) is just a limiting case of (A 3) 
when S+aQ. We should also point out that the bounding constant c2 can become 
very large when the domain 51 is small. This is especially clear from (A 3), because 
c, is proportional to the integral of V-n,  which itself is proportional to the mean 
curvature of the surface al2. Also notice that if we take n as JZ, the unit vector in the 
s-direction, and V as x, then (A2)  gives us a weaker version of the uncertainty 
principle which can be cast into the more familiar form if P and V are replaced by 
P- (P) and V -  (V), respectively. 

Appendix B 
In this Appendix we will study a one-dimensional problem in detail to illustrate 

the ideas proposed in the main text. Sophistication of the model will increase as we 
proceed. 

We start with a cell 8 of dimension L that is completely free-slip and has perfectly 
insulated sides at x = &&. The two horizontal plates are located at z = ++. The 
solution for this problem is 

(B 1) 
- 1 - V& {( 1 + ~ ) " 4 ~ [ 1 -  (R /y2 )  (1 -,4/.4)]}: 

2 *I% A =  

B = sin nx(z++) cos jn -+- (: :). I 
j u, ac -- sin nn(z+t) cos jlr 
nL 

u, cc cos nn(z++) sinjn -+- (l 1). I 
p K cos nn(z+i) cosjn -+- (: 1)) I 

where y = ((nn)2 + ( jn/L),) and p,  = (nn)2 for integers n and j. We see from (B 1) that 
it is possible to have ah/aR < 0, although the most unstable state clearly satisfies 

For illustration, we will fix n = 1 and R = RCo _= 7n4. The resulting A m. L curves 
with different j are shown in figure 8. For any given j, A vanishes when L = d2j .  The 

aA/aR > 0. 
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(b) 

A A 

L 
FIGURE 8. (a) Growth rates A ws. size L for a free-slip insulated one-dimensional cell are shown aa 
solid or dashed, according to whether their symmetry under 2 3 - 2  is even or odd, when R = Rco. 
The dotted curve, given by (B 3), connects intersections of curvesj andj+ 2 (j = integer) that have 
the same symmetry. Biological pattern formation models show the same features. ( b )  Perturbing 
the boundary condition in general removes the degeneracies of (a) and forms many wavy curves. 

intersection of curves j and j + 2 which have the same symmetry under x + -x can 
be easily computed from (B I), and is given by 

for large Lint, the size of the cell when degeneracy occurs. (The curve hint(L) is shown 
dotted in figure 8.) The difference in cell sizes between two intersections (j andj+2,  
and j + 2  and j+4)  is 2/2.  

Also notice that in each degenerate two-dimensional subspace spanned by y5 and 
y5+2 we can find a vector y = y,-y~,+~ such that the associated 

e = e, - e,+, K (cos j q X / r ,  +a) - cos (j + 2) x(~/L + $1) 
vanishes identically at x = +&. Hence 0 = a@/& = 0, and the solution satisfies 
ae/an+$e = 0 on a52 for any $, i.e. perturbation of ,4 has no effect on at all! 
These 'anchored' solutions are clearly manifested in figure 9(c) when translated in 
terms of an R, vs. L plot. Similarly, one can find anchored solutions when the viscous 
boundary condition is changed, though they will be different from the ones 
constructed above. The critical Rayleigh number at L = Lint can also be calculated 
to give 

(B 4) 
7c4 R, x RCo+ 18-. 
L2 

Next, we consider boundary perturbation of the form iW/an+$O = 0. To be 
specific, we will consider 8 that is odd in x. (Even solutions can be obtained by the 
replacement rule k j  1 + k, 1 + in.) The problem is reduced to the following deter- 
minantal equation : 

$sin k21+k2 cos k21 /$sin k , l + k ,  cos k , l  $sin k , t + k ,  cos k,l\ 
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(B 6) 

where 1 = & and kk (m = 1,2,3) are solutions to the dispersion relation 

( A  + + k:) ( A  +r(n2 + k k ) )  (n2+ k:) -RUkk = 0, 

and t9 is some suitable linear combinations of sin n(z+i )  sin k j x .  To simplify the 
algebra, we will consider the problem of determining R, as a function of 1. We can 
easily show that for small deviation of AR = Rc-RcO, the k k  are given by 

For AR > 0, the lowest-order solution to (B 5) can be obtained by (i) dividing 
through the third column of the determinant by cos k,l and approximating 
tan k,l w i for large 1, (ii) allowing all the k, that do not appear as arguments 
of sinusoidal functions to assume their unperturbed values. The result is 
/3 sin (k, - k,) 1 = 0, or AR = 18n4/L2, provided B is not too small. (We are extracting 
the leading order of (B 5) .  Hence, the case when B is very small must be handled 
separately. This is the first indication of the existence of the cross-over size L,, we 
discuss in $3.) Notice that this lowest-order solution coincides with that given by 
(B 4)! As a matter of fact, this result can also be predicted using a two-scale 
amplitude equation (Cross et al. 1983). The agreement between the two methods is 
not too surprising once we realize that both approaches employ the same global 
phase drift (k, - k,) 1 to ensure that the correct boundary conditions are satisfied to 
the lowest order. To get the next-order correction, we can rewrite (B5) as 
p sin (k , -  k,) I = f for some function f that also involves sinusoidal functions itself. 
Then one replaces the k, contained in f by their first-order (correct to O(bR)i )  values 
so that the equation is solved by (k, - k,) 1 = n -$,, = n - sin-'f/B, or 

18z2(x - do)' 
LZ 

AR= 

for some complicated function do that also involves L. Correct to O(L-') we find that 
do is given by 

$o = sin-,( -($sin k , l+  (; -+- ;) cos k,l )C0Slk,l) ~ . 

The point to be made is that for any fixed 8, the oscillatory behaviour as carried by 
#,, is always O(L-') smaller than the ' background ' L-, decay law given by (B 4), thus 
confirming our claim in $3. Figure 9 shows the comparison between (B9)  and 
numerical calculations. 

For any given small positive B, the cross-over size can be estimated by requiring 
q50 to be well-defined for all L > L,. Thus, 

4x 

Lc-o 7' 
This agrees with our observation in the main text that, for a given positive 8, the 
stability curve R,(L) must be monotonic and independent of the perturbation 
strength for large enough L, as is predicted by (B 4), though the concept of largeness 
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FIQURE 9. (a), ( b )  The prediction of (B 9) (solid lines) and numerical results (dashed) forg = 0.3 and 
1, respectively. q50 is set to zero whenever it is not defined for a given L.  Solutions for = 0.3 (solid ), 
1 (dashed) and 50 (dotted) are displayed in (c) to show the existence of ‘anchored’ states. 

for L must be measured relative to the cross-over size given by (B l l ) ,  which predicts 
its sensitive dependence on /? when /? is small. 

The Re us. L plot for solutions whose 8 is even under x+-x looks very similar to 
that for odd 8 when /3 > 0. However, their respective runaway solutions look entirely 
different once /3 is tuned negative. This is shown in figure 10. The detachment of an 
even solution from the Re axis immediately after /3 turns negative agrees with our 
observation in 5 2 that the variational principle associated with J [ r ]  might encounter 
difficulty when /3 is negative, especially if the system is small. The odd branch 
behaves differently simply because its symmetry requires excitations in the x- 
direction, thus contributing a non-zero ,ull in (2.39) to compensate the size effect 
coming from c2. (Notice that pll scales like ~ 5 - ~ . )  Specifically, the intersection of the 
runaway curve with the L-axis for the current problem is given by 

K 

Notice that Lev,, is proportional to -/?for small negative /?, a result that is expected 
from the discussion at the end of $2. Likewise, the largest possible -/3 allowed for 
the intersection between the runaway curve and the L-axis not to happen is in 
inverse proportion to Lodd when Lodd is small, which is also correctly predicted by 
(2.39). 
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FIQURE 10. Snapshots of the runaway solutions when (a) /3 = -2.7, (b)  -3, 
and (c) -3.145. Solid curves show odd modes; dashed curves, even modes. 

It is also easy to compute the solutions to (B 5 )  and (B 6) when R is fixed while /3 
is negatively very large. We find 

A ki x -A ,  k,2 x --, ki X -7t2, 
cl 

i/3+k1 x 0. 

To lowest order the associated eigenvector is given by 

sin k, x 
u, x u, x 0, 0 x sin 7tz- 

sin k, 1 

This shows clearly that the runaway solution Af = -/3 develops a thermal 
boundary layer of thickness -,&l and strongly suppresses the velocity field. 

It is obvious that all the previous results we have obtained through detailed 
analysis of a cell with free-slip sidewalls must similarly hold for a cell with rigid 
sidewalls because the methods we used are equally valid for the latter. Instead of 
repeating the same analysis, we simply show in figure 11 the numerical calculations 
as further evidence supporting our claims. 

As a final example, we present the numerical results of our study of a cell whose 
a on the two horizontal plates is also tunable. (a = corresponds to a rigid-rigid 
cell.) Again, sidewall properties are tuned by (a different) a and /3. The critical 
Rayleigh number is computed by maximizing J[y] for y that is in a Hilbert subspace 
of finite dimension whose basis vectors 0 and u are independently proportional to 
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FIGURE 11.  Solutions for a free-free cell with (a,/3) taking all possible combinations from three 
values: 0.1, 2, and 50. The existence of the practically anchored states is obvious. The light solid 
monotonic curve is calculated from (B 4). 

their corresponding variables given in (B 2), with 15 modes of odd j and five modes 
of odd n. It is easy to show that this approach is actually just a variant of the 
Galerkin expansion method one would use for solving a general linear problem in the 
sense that now we are simultaneously projecting both the governing equations and 
the boundary conditions onto the same conveniently chosen basis vectors. This 
particular projection scheme is favoured over others because it is manifestly 
equivalent to the variational principle, and the resulting generalized matrix 
eigenvalue problem is Hermitian. The results are shown in figure 12. One is quickly 
convinced of the existence of the practically anchored states from this figure. Again, 
the basic features are not different from those for a free-slip cell. 

Appendix C 
A simple sufficient condition for the method of separation of variables to hold for 

the convection problem is derived. This criterion is then shown to be satisfied for the 
ansatz described by (3.27), thus justifying the approach used in $3. The basic 
ingredient of our argument is contained in the following estimate for a Rayleigh-Ritz 
ratio : 

LEMMA. Let f(z) be a trial function de$ned on [0,1]. Let A ,  denote the ground-state 
eigenvalue for -d2g/dz2 = Ag, where g must satisfy +dg/dz+ag = 0 at z = 0,  1 for 
some non-negative constant a. Then for any f that is not identically zero we have 

J o  
Before proving it, we note that the first inequality is the standard variational 

characterization for the eigenvalue A,. Therefore, we only need to  verify the second 
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FIGURE 12. Solutions for a cell with sidewall a = taking three values: 0 (solid), 1 (dashed) and 
15 (dotted). The two horizontal plates have (a) a = 0, ( b )  4 and (c) 50, respectively. The practically 
anchored states are clearly exhibited in this figure. 

inequality. Let k = At E [0, A ] ,  then the boundary condition implies a = k tan BE. by 
convexity of cosine function in the interval [ O , ~ A ] ,  we know cos y 2 (1 -2y /x)  for all 
YE [0, #A]. Hence, 

1 dY 2 r*dY7 1 r (1 -2YlnY 
which implies, upon evaluating the integrals, that 

Equation (C 1) is then obtained by simply inverting this inequality and noting that 
A, = k2. 

Notice that (C 1) yields the following well-known assertion when applied to the 
case a = co : 

COROLLARY. Any non-zero trial function f which satisjies the boundary condition 
f(0) = f (  1)  = 0 always satisfies 

2 n2. (C 2 )  
[ (a2dZ 
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More generally, the previous two assertions are still true iff is a function defined 
on a three-dimensional cell SZ of constant horizontal cross-section, provided we 
substitute df/dz by Vf, f2(0)+f”(l) by JaQ f 2 ,  and s:dz by JQ, respectively. 

Suppose the sidewall is perfectly insulating and rotation-free, i.e., a = /3 = 0 on the 
sidewall S. Then we can expand both 8 and u, in an orthonormal basis plj that are 
eigenfunctions of the two-dimensional Neumann Laplacian on the horizontal cross 
section: -Vitpj = ,ujvj. Of course, the ‘Fourier coefficients ’ will then be functions of 
z. Now if we look at (2.9) it is clear that in order to decouple all the q, modes (so that 
we do have separation of variables) we must be able to write the horizontal 
component uh of the fluid velocity as linear combinations of v h v .  (The pressure p is 
automatically expandable in vj.) This apparently implies that the vertical vorticity 
w must vanish. Thus, we are led to investigate when we can expect w to vanish 
identically. 

Taking the curl of the Navier-Stokes equation and projecting it on the i, direction 
we obtain 

hw = av=w. (C 3) 

Assume w is not identically zero, then upon multiplying (C 3) by w and integrating 
over the fluid cell SZ we get 

In arriving at  this result we have performed integration by parts, imposed the 
boundary conditions of (2.12) and (2.16) on aSZ, and made use of (C 1) just derived. 
(Notice that the boundary term involves no contribution from the sidewall S, 
because w vanishes on it by the rotation-free condition.) Hence, w must vanish 
identically, thus permitting separation of variables, provided the growth rate of 
interest lies above the bound set up by (C 4). If we recall the derivation of the large- 
cell scaling behaviour of A or R, for positive a in $3, we immediately see that the 
argument presented there is well justified, because for all large enough size L the 
relevant growth rate h considered there actually goes to zero, and therefore does lie 
above the bound given by (C 4). 

We would also like to point out that had we started studying R, directly without 
invoking A ,  as opposed to what is done in $3, then all the orthonormal eigenfunctions 
would have zero vertical vorticity, and separation of variables certainly is valid if the 
sidewall is insulating and rotation free. 

REFERENCES 

AHLERS, G.,  CROSS, M. C., HOHENBERO, P. C. & SAFRAN, S. 1981 J .  Fluid Mech. 110, 297. 
B E R Q ~ ,  P. & DUBOIS, M. 1980 In Systems Far from Equilibrium (ed. L. Gerrido). Springer. 
BUELL, J. C. & CATTON, I. 1983 Phys. Fluids 26, 892. 
BIJSSE, F. H. 1985 In Hydrodynumic Instabilities and the Transition to Turbulence (ed. H. L. 

BUSSE, F. H. & RIAHI, N. 1980 J .  Fluid Mech. 96, 243. 
CARMO, M. P. DO 1976 Differential Geometry of Curves and Surfaces. Prentice-Hall. 
CHANA, M. S. & DANIELS, P. G. 1989 J .  Fluid Mech. 1 9 9 ,  257. 
CHANDRASEKHAR, S .  1954 Am. Math. Mon. 61,  170. 
CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability, pp. 27ff. Oxford University 

Swinney & J. P. Gollub). Springer. 

Press. 



Finite-cell Rayleigh-BLnard convection 585 

CHARLSON, G. S. & SANI, R. L. 1970 Intl J .  Heat Mass Transfer 13, 1469. 
CHARLSON, G. S. & SANI, R. L. 1971 Intl J .  Heat Mass Transfer 14, 2157. 
CHEN, Y.-Y. 1991 Effects of boundaries on Rayleigh-Be'nard convection. PhD thesis, California 

Institute of Technology. 
CHEN, Y.-Y. 1992 Phys. Rev. A45, 3727. 
COURANT, R. & HILBERT, D. 

CROQUETTE, V. 1989a Contemp. Phys. 30, 113. 
CROQUETTE, V. 1989b Contemp. Phys. 30, 153. 
CROQUETTE, V., MORY, M. & SCHOSSELER, F. 1983 J. Phys. Paris 44, 293. 

1966 Methods of Mathematical Physics, vol. I,  chapter VI. 
Interscience. 

CROSS, M. c. 
CROSS, M. c. 
CROSS, M. c. 
CROSS, M. c., 
DAVIS, S. H. 

1980 Phys. Fluids 23, 1727. 
1982 Phys. Fluids 25, 936. 
1988 Phys. Rev. A38, 3593. 
DANIELS, P. G., HOHENBERQ, P. C. & SIQQIA, E. D. 1983 J. Fluid Mech. 127, 155. 
1967 J .  Fluid Mech. 30, 465. 

EDWARDS, B. F. 1988 J .  Fluid Mech. 191, 583. 
GOLLUB, J. P. & STEINMAN, J. F. 1981 Phys. Rev. Lett. 47, 505. 
HALES, A. L. 1937 Geophys. Suppl. Mon. Not. R. Astr. SOC. 4, 122. 
JOSEPH, D. D. 1976 Stability of Fluid Motions, vols. I & 11. Springer. 
KOLODNER, P., BENSIMON, D. & SURKO, C. M. 1988 Phys. Rev. Lett. 60, 1723. 
MORSE, P. M. & FESHBACH, H. 1968 Methods of Theoretical Physics. vol. I & 11. McGraw-Hill. 
MURRAY, J. D. 1989 Mathematical Biology. Springer. 
NEWELL, A. C. & WHITEHEAD, J. A. 1969 J .  Fluid Mech. 38, 279. 
NIEMELA, J. J., AHLERS, G. & CANNEL, D. S. 1990 Phys. Rev. Lett. 64, 1365. 
OSTRACH, S. & PNUELI, D. 1963 Trans. ASME C: J .  Heat Transfer 85, 346. 
PELLEW, A. & SOUTHWELL, R. V. 1940 Proc. R. SOC. Lond. A 176, 312. 
PFOTENHAUER, J. M., NIEMELA, J. J. & DONNELLY, R. J. 1987 J .  Fluid Mech. 175, 85. 
PNUELI, D. & ISCOVICI 1967 Israel J .  Tech. 5, 243. 
SANI, R. L. 1964 2. Awew.  Math. Phys. 15, 381. 
SEQEL, L. A. 1967 J .  Fluid Mech. 30, 625. 
SHAPERE, A. & WILCZEK, F. (ed.) 1989 Geometric Phases in Physics. World Scientific. 
SHAUMEYER, J. N., BEHRINQER, R. P. & BAIERLEIN, R. 1981 J .  Fluid Mech. 109, 339. 
SOMERSCALES, E. & DROPKIN, D. 1966 Intl J .  Heat Mass Transfer 9, 1189. 
SOROKIN, V. S. 1953 Prikl. Mat. Mekh. 17, 39. 
SOROKIN, V. S. & SUSHKIN, I. V. 1960 Sou. Phys. JETP 11, 440. 
SPARROW, E. M., GOLDSTEIN, R. J. & JONSSON, V. H. 1964 J .  Fluid Mech. 18, 513. 
STEINBERQ, V., MOSES, E. & FEINBERQ, J. 1987 In Chaos '87: Proc. Intl Conf. on the Physics of 

Chaos and Systems Far from Equilibrium, Monterey, CA, January 1987 (ed. M. Duong-Van). 
North-Holland. 

TURINQ, A. M. 1952 Phil. Trans. R. Soc. Lond. B237, 37. 
VERHOEVEN, J. D. 1969 Phys. Fluids 12, 1733. 
YIH, C.-S. 1959 &. Appl. Maths 17, 25. 
ZHONG, F., ECKE, R. & STEINBERQ, V. 1991 Asymmetric modes and the transition to vortex 

structures in rotating Rayleigh-Be'nard convection. Preprint. 


